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Spatial solitons in type II quasiphase-matched slab waveguides
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The existence and dynamics of one-dimensional spatial solitons formed upon propagation in quasiphase-
matched gratings, through three-wave parametric interaction, is analyzed. We study the general case in which
the grating exhibits a periodic modulation of both the refractive index and the second-order susceptibility. It is
demonstrated that for negative effective wave vector mismatch the induced third-order nonlinearities increase
the domain of soliton instability. Finally, the dependence of the efficiency of the second harmonic generation
process in the soliton regime, on the parameters of the grating, is discussed.
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There are several techniques for phase matching the in
acting waves in a second harmonic generation~SHG! pro-
cess. Among them, quasiphase-matching~QPM! technique,
known since the early days of nonlinear optics@1#, consists
of compensating the wave vector mismatch through artifi
periodic variation of the quadratic nonlinearity coefficien
x (2). It offers several important advantages: it uses the hi
est possiblex (2) coefficients; it eliminates the spatial walk
off effects; it can use nonbirefringent materials; and ph
matching can be achieved at room temperature. QPM
thus, found important applications in designing all-optic
switching devices, high-energy femtosecond laser source
in understanding phenomena related to the soliton forma
and their propagation inx (2) materials. For a review of QPM
methods, see Refs.@2–4#. Depending on the number of in
teracting waves in a SHG process, there exist two type
phase-matching geometries: in the first case, type I ph
matching, there are two interacting waves, the fundame
wave~FW! at frequencyv and the second harmonic~SH! at
2v, orthogonally polarized. Conversely, in the type II geo
etry, two waves atv, FW, orthogonally polarized, generate
wave at 2v, the SH, polarized along either of the two dire
tions of the input waves. The fact that in a type II SH
process the two FWs are orthogonally polarized makes
dynamics of wave evolution very different as compared
the wave dynamics in a type I SHG process, even in the c
in which the two FWs are initially identical.

Over the last few years, soliton formation in quadra
media has been the ground of intense research activity,
experimental and theoretical. Thus, in addition to the fi
experimental verification of soliton existence in a bulk KT
crystal @5# and LiNbO3 slab waveguides@6#, the existence
and stability of soliton propagation in quadratic media h
been demonstrated for various geometries: spatial soliton
slab waveguides@7# or bulk crystals@8–10# and walking
solitons in slab waveguides@11# or bulk crystals@12#. Sev-
eral theoretical studies have been reported on o
dimensional~1D! @13–17# and, recently, two-dimensiona
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@18# spatial soliton propagation in QPM waveguides, in t
type I geometry. These studies have shown, among o
things, that the periodic modulation of the quadratic nonl
earity induces an artificial cubic nonlinearity that can co
pete with the former one, a phenomenon that has also b
observed experimentally@19#. The first experimental verifi-
cation of two-dimensional soliton formation in QPM grating
was reported in Ref.@20#. For a comprehensive review o
quadratic solitons, see Refs.@21,22#.

In this Rapid Communication we present, to our know
edge for the first time, a theoretical analysis of soliton f
mation and stability upon propagation in planar QPM wav
guide gratings, in the type II geometry, by taking in
account the higher-order nonlinearities induced by the p
odicity of the grating@13#. We consider both gratings fo
which the averagex (2) coefficient vanishes@23#, as well
semiconductor based gratings for which both the aver
x (2) coefficient and the modulation of the refractive indic
are different from zero@24,25#.

We consider the propagation in a lossless QPM grati
under type II SHG conditions, of two orthogonally polarize
cw beams at frequencyv and their SH at frequency 2v. The
QPM grating consists of a periodic structure, for which bo
the linear part of the susceptibility~refractive index! and the
quadratic susceptibility are periodic functions of the longi
dinal distance, as it is illustrated in Fig. 1. Under these c
ditions, expressed in dimensionless units, the dynamics
the three normalized copropagating waves is governed by
following system of equations,

rd,
FIG. 1. Schematic presentation of a QPM grating:xav is the

average value of the quadratic nonlinearity,xM is its modulation
amplitude.
©2003 The American Physical Society03-1
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ifz1ftt1af~z!f1G~z!w* ce2 ibz50,

iwz1wtt1aw~z!w1G~z!f* ce2 ibz50, ~1!

icz1 1
2 ctt1ac~z!c1G~z!fweibz50,

wheref andw are the normalized FWs,c is the normalized
field at SH, z and t are the normalized longitudinal an
transversal distances, respectively, andb5z0(kf1kw2kc)
[z0Dk is the normalized wave vector mismatch, withkf,w,c

the corresponding wave vectors. Here,z05kcw0
2,

with w0 the characteristic beam width. The normaliz
coordinates are related to the physical ones,z and x,
by the relations z5z0z and x5w0t. The normalized
quadratic para-metric interaction coefficientG(z)
5vz0x (2)(z)(2S0 /e0c3n̄fn̄wn̄c)1/2, whereas the normalize
modulations of the refractive indices are given byaf,w(z)
5vDnf,w(z)/c and ac(z)52vDnc(z)/c, where S0

51 GW/cm2 is a characteristic beam intensity andn̄f,w,c
andDnf,w,c(z) are the averages and the modulations of
refractive indices at the corresponding frequency, resp
tively.

The dynamics of the interacting beams is determined
the interplay among three characteristic lengths. Th
lengths are the diffraction lengthz0 , the coherence length
Lc5p/uDku, and the domain lengthL. In normalized units,
z051 andLc5p/ubu. We consider here a typical QPM gra
ing for which the domain length is much smaller than t
diffraction length, that is,L!1. Then, the grating wave vec
tor defined byuku5p/L satisfies the relationuku@1. Under
these circumstances, the dynamics of the beam interac
can be described by a set of averaged equations@13#. Fol-
lowing the method introduced in Ref.@13#, we expand in
Fourier series the grating parametersaf,w,c and G and the
fields f(z,t), w(z,t), andc(z,t):

G~z!5g01g(
n

gneinkz, ~2!

af,w,c~z!5af,w,c(
n

gneinkz, ~3!

f5(
n

fn~z,t!einkz, w5(
n

wn~z,t!einkz,

~4!

c5(
n

cn~z,t!ei (nk1b̄)z,

whereg0 and g are the average and the modulation amp
tude of the parametric coupling strength, respectively,af,w,c
are the amplitudes of the modulation of the refractive ind
at the frequencies of the two harmonics,fn(z,t), wn(z,t),
and cn(z,t) are slowly varying functions with respect toz
and t, as compared toeikz, and b̄5b2k is the effective
phase mismatch parameter. We assume that the phase
match introduced by the QPM grating can be very well co
trolled, so thatb̄ is very small~although bothb anduku must
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be large!. For the geometry in Fig. 1, the Fourier coefficien
gn52 sgn(k)/ ipn for n odd andgn50 otherwise. Here, the
sgn(k) factor ensures that both positive and negative val
of k correspond to the same grating. Consequently, si
sgn(b)5sgn(k), we can treat both casesb"0 simulta-
neously.

Furthermore, if one assumes that the higher harmonic
the expansions~4! are of the orderO(1/uku) or smaller
whereas the zero-order ones are of the orderO(1), then, by
inserting the expressions~2!–~4! in the system~1! and col-
lecting all terms at the lowest order in 1/uku, O(1), we ob-
tain the relationships between the higher-order Fourier co
ficients and the zero-order ones~or, as called in this paper
the average fields!

fnÞ05@afgnf01~g0dn,211ggn11!w0* c0#/nk,

wnÞ05@awgnw01~g0dn,211ggn11!f0* c0#/nk, ~5!

cnÞ05@acgnc01~g0dn,11ggn21!f0w0#/nk.

Then, by inserting these expressions in the system~1! and
neglecting higher-order terms in the corresponding sys
that describes the evolution of the zero-order~average!
fields, we end up with the following system of equations th
describes the evolution of the zero-order fields

iuz2buu1utt1sv* w1d~ uvu22uwu2!u50,

ivz2bvv1vtt1su* w1d~ uuu22uwu2!v50, ~6!

iwz2b̃w1 1
2 wtt1s* uv2d~ uuu21uvu2!w50,

where u5f0e2 ibuz, v5w0e2 ibvz, w5c0e2 i (bu1bv)z, and
b̃5b̄1bu1bv is the residual wave vector mismatch. He
bu and bv are the nonlinear wave vector shifts of the FW
The parameterss andd are given by the following expres
sions:

s5
2i sgn~k!

p
@g0~af1aw2ac!/k2g#, ~7!

d5@g0
21g2~128/p2!#/k, ~8!

and represent the effective second-order nonlinearity and
induced third-order nonlinearity, respectively. Note th
through this procedure one takes into account the influe
of all terms in Eqs.~2!–~4! on the average fields; howeve
this is done only to the orderO(1/uku). Finally, by introduc-
ing the rescaled fieldsū5usuu, v̄5usuv, and w̄5sw, the
system~6! becomes

i ūz2buū1ūtt1 v̄* w̄1 d̄~ uv̄u22uw̄u2!ū50,

i v̄z2bvv̄1 v̄tt1ū* w̄1 d̄~ uūu22uw̄u2!v̄50, ~9!

iw̄z2b̃w̄1 1
2 w̄tt1ūv̄2 d̄~ uūu21uv̄u2!w̄50,
3-2
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where d̄5d/usu2. Note that this analysis can be easily e
tended to the 2D case.

In order to study the soliton solutions of the system~1! we
first determine the soliton solutions~solitary waves! of the
system~9!, whose coefficients do not depend on the longi
dinal distancez. Then, the average fields$f0 ,w0 ,c0% are
determined from the bar fields$ū,v̄,w̄% and subsequently
from Eqs.~4! and~5!, we compute the fieldsf, w, andc at
the input facet of the QPM grating. Finally, these fields a
used as initial conditions for the system~1!; we then propa-
gate them numerically in the actual QPM grating; and ver
whether they reach a regime of stationary propagation,
whether they behave as soliton solutions. The soliton s
tions of the system~9! are defined as solutions of the syste
obtained from~9! by dropping thez derivatives, i.e., solu-
tions which arez independent. We found these solutions n
merically by a standard relaxation method; an example
presented in Fig. 2~a,b!, for two values ofd̄. A set of values
for the grating parameters that corresponds to these so
parameters areaf,w,c50, g050, g51, andk59.35. Figure
2 shows that the solitons of the system~9! approximate the
solitons of the full system~1! very closely: after a transien
propagation distance over which part of the soliton energ
radiated, the beam propagation stabilizes and its profile
each harmonic, follows the profile of the grating. Thus, t
soliton that is formed can be viewed as a beam with
envelope described by the system~9!, and whose intensity

FIG. 2. QPM solitons of the system~9! with parametersb̄52,

bu52, bv51, and two values of the induced nonlinearity,d̄

50.05~a! andd̄520.05~b!. The curves plot theū (•••), v̄ ~- - -!,

and w̄ ~—! fields along the transverse distancet. Panels~c!, ~d!,
and ~e! correspond to the fieldsf(z,t), w(z,t), andc(z,t), re-
spectively, for the solitons in~a!.
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profile follows the periodicity of the grating.
As seen in Fig. 2~a,b!, the induced Kerr nonlinearities

have a strong influence on the characteristics of the sol
solutions. To study in more detail this aspect, we determi
the dependence on the soliton parametersbu , bv , andb̄ of
the total beam intensityI tot and the unbalanced beam inte
sity I unb. These quantities are constants of motion associa
with the system~9! and are given by the following equation

I tot5E dt~ uūu21uv̄u212uw̄u2!/2, ~10!

I unb5E dt~ uūu22uv̄u2!/2, ~11!

In Fig. 3 we show the fractionRw5I w /I tot of the beam in-
tensity at the SH, calculated forb̄52, for three values of the
induced third-order nonlinearity coefficientd̄. This figure
shows that, asd̄ increases, the fractionRw of the SH de-
creases and, for a fixedd̄, it increases with nonlinear wav
vectorsbu andbv . Interestingly, ford̄.0 there is a certain
value of the parametersbu and bv for which Rw reaches a
maximum. For instance, atb̄52, for d̄50.05 the ratioRw is
maximum atbu

05bv
051.65.

Finally, in what follows we discuss the influence of th
Kerr-induced nonlinearity on the stability properties of t
QPM solitons. To begin with, we mention that the system~9!

has soliton solutions only ifbu,v.0 and b̃.0, i.e., bu

1bv.2b̄. Therefore, forb̄.0 solitons exist for positive
bu,v whereas forb̄,0 solitons exist forbu1bv.ub̄u. Fur-

FIG. 3. The fractionRw5I w /I tot of the beam intensity at the SH

vs the nonlinear wave vectorsbu andbv , calculated forb̄52 and

d̄520.05 ~a!, d̄50 ~b!, and d̄50.05 ~c!.
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thermore, the boundary of the domain of stable solitons
given by the following equation@26#:

]~ I tot ,I unb!

]~bu ,bv!
50. ~12!

We determined the stability domains numerically and su
marize the results as follows. Forb̄.0 solitons are stable
for all physically meaningful values ofd̄, namelyd̄&0.5. In
contrast, forb̄,0, solitons are unstable within a certain d
main, whose size increases withd̄. These results are summa
rized by Fig. 4. This figure illustrates another important ph
nomenon, namely,multistability of solitons of system~9!.
Thus, if the stability domains are represented in
(I unb,I tot) plane~see right panel in Fig. 4!, one sees that fo
certain fixed values ofI unb there are two stable branches
stable solutions. Therefore, it is possible that at the sa
values of invariantsI tot and I unb correspond two stable solu

FIG. 4. Left, soliton stability domains determined forb̄522

and d̄50.15 ~dark gray! and d̄50.3 ~light gray!. Right, the same

stability domains represented in (I unb,I tot) plane:d̄50.15 ~—! and

d̄50.3 ~- - -!.
tt.
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tions @27#. Furthermore, as the differenceDI tot between the

crossing points increases withd̄, one expects that the qualit
of this multistability, as introduced in@28#, is enhanced by
the induced Kerr nonlinearity; however, a quantitative d
scription of this phenomenon is beyond the scope of t
paper. To investigate whether these stability properties of
solitons of the averaged system~9! can be extended to soli
tons of the full system~1!, we performed an extensive serie
of numerical simulations. Thus, solitons corresponding
different regions in the parameter space in Fig. 4 were u
as initial conditions for system~1!. With these initial condi-
tions, the system~1! was then numerically integrated. Th
conclusion of these numerical tests was that, ford̄&0.5,
stable solitons that correspond to system~9! remain stable
upon propagation in the grating described by the full syst
~1!. More exactly, when propagated in the actual gratin
stable solitons of system~9! showed oscillations that fol-
lowed the periodicity of the grating, but their envelope r
mained stable.

In conclusion, we have determined the characteristics
1D-soliton formation and their stability upon propagation
a QPM grating, for the type II geometry. It has been dem
strated that at the first order of a perturbation theory
soliton propagation in the QPM grating is strongly infl
enced by the induced focusing or defocusing Kerr-type n
linearities. Finally, the influence of this induced Kerr nonli
earity on the stability properties of the QPM solitons h
been analyzed and the theoretical results were verified
systematic numerical simulations.
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