RAPID COMMUNICATIONS

Spatial solitons in type Il quasiphase-matched slab waveguides

PHYSICAL REVIEW E 68, 065603R) (2003

N.-C. Panoiut D. Mihalache?® Hongling Rac** and R. M. Osgood, Jr.
Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA

2Department of Theoretical Physics, Institute of Atomic Physics, P.O. Box MG-6, Bucharest, Romania
3ICFO-Institut de Ciencies Fotoniques, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
(Received 11 June 2003; published 15 December 2003

The existence and dynamics of one-dimensional spatial solitons formed upon propagation in quasiphase-
matched gratings, through three-wave parametric interaction, is analyzed. We study the general case in which
the grating exhibits a periodic modulation of both the refractive index and the second-order susceptibility. It is
demonstrated that for negative effective wave vector mismatch the induced third-order nonlinearities increase
the domain of soliton instability. Finally, the dependence of the efficiency of the second harmonic generation
process in the soliton regime, on the parameters of the grating, is discussed.
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There are several techniques for phase matching the intefd18] spatial soliton propagation in QPM waveguides, in the
acting waves in a second harmonic generatiSRlG) pro- type | geometry. These studies have shown, among other
cess. Among them, quasiphase-matchi@iPM) technique, things, that the periodic modulation of the quadratic nonlin-
known since the early days of nonlinear optid3, consists earity induces an artificial cubic nonlinearity that can com-
of compensating the wave vector mismatch through artificiapete with the former one, a phenomenon that has also been
periodic variation of the quadratic nonlinearity coefficient, observed experimentalj19]. The first experimental verifi-
x?). It offers several important advantages: it uses the highcation of two-dimensional soliton formation in QPM gratings
est pOSSibl@((z) CoefﬁCientS; it eliminates the Spatial walk- was reported in Re"[zo:l For a Comprehensive review on
off effects; it can use nonbirefringent materials; and phasgadratic solitons, see Ref21,22.
matching can be achieved at room temperature. QPM has, | this Rapid Communication we present, to our knowl-
thus, found important applications in designing all-opticalgqge for the first time, a theoretical analysis of soliton for-
switching devices, high-energy femtosecond laser sources, Qtation and stability upon propagation in planar QPM wave-
in unde_rstanding p_hen_on;ena rel.ated to the sqliton formatioauide gratings, in the type Il geometry, by taking into
and their propagation ig‘®) materials. For a review of QPM account the higher-order nonlinearities induced by the peri-

gf;gggs’viz\?es?;%_g}_" g eegzg;nsg %Zrtzzgmsv%r to f Iens O(?dicity of the grating[13]. We consider both gratings for
g wav > Pro e YPES Qlhich the averagey® coefficient vanisheg23], as well
phase-matching geometries: in the first case, type | phase

matching, there are two interacting waves, the fundamentaﬁ((azn)1 |conf?.u§:tor baseg gratlngls .for V\]ﬁh'ﬁ h b?th t'he average
wave (FW) at frequencyw and the second harmonigH) at X é:_(f)fe |C|e?t and t ezzrln(z)du ation of the refractive indices
2w, orthogonally polarized. Conversely, in the type Il geom—are ifferent from zer¢24,25.

X We consider the propagation in a lossless QPM grating,
etry, two waves abr, FW, orthogonally polarized, generate a " :
wave at 2, the SH. polarized along either of the two direc- under type Il SHG conditions, of two orthogonally polarized

tions of the input waves. The fact that in a type Il SHG cw beams at frequenay and their SH at frequencyc2 The

process the two FWs are orthogonally polarized makes th PM grating consists of a periodic structure, for which both

dvnamics of wave evolution verv different as compared to e linear part of the susceptibilityefractive index and the
y L y P uadratic susceptibility are periodic functions of the longitu-
the wave dynamics in a type | SHG process, even in the cas

in which the two FWs are initially identical inal distance, as it is illustrated in Fig. 1. Under these con-
Over the last few years soli)t/on forma.tion in quadraticditions’ expressed in dimensionless units, the dynamics of
media has been the ground of intense research activity, bo e three normalized copropagating waves is governed by the

experimental and theoretical. Thus, in addition to the first llowing system of equations,
experimental verification of soliton existence in a bulk KTP
crystal[5] and LiNbQ; slab waveguide$6], the existence
and stability of soliton propagation in quadratic media has
been demonstrated for various geometries: spatial solitons in
slab waveguide$7] or bulk crystals[8—10 and walking
solitons in slab waveguidd4.1] or bulk crystals[12]. Sev-

eral theoretical studies have been reported on one-
dimensional (1D) [13-17 and, recently, two-dimensional

FIG. 1. Schematic presentation of a QPM grating; is the
*Present address: RSoft Design Group, 200 Executive Boulevardverage value of the quadratic nonlinearity, is its modulation
Ossining, NY 10562. amplitude.
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i+ ot ag(Hd+T()e* Ye 1BE=, be large. For the geometry in Fig. 1, the Fourier coefficients
gn=2 sgn()/imn for n odd andg,=0 otherwise. Here, the
o+ @t a(D)e+T(L)d* e 1Pi=0, (1) sgn(x) factor ensures that both positive and negative values
of x correspond to the same grating. Consequently, since
i+ 3t ay(Oy+ ['({)peePi=0, sgn(B)=sgn(x), we can treat both casg8=0 simulta-
neously.
where¢ and¢ are the normalized FWg is the normalized Furthermore, if one assumes that the higher harmonics in

field at SH, ¢ and = are the normalized longitudinal and the expansiong4) are of the orderO(1/|«|) or smaller
transversal distances, respectively, g zo(k,+k,—ky) whereas the zero-order ones are of the ocdgt), then, by
=z,Ak is the normalized wave vector mismatch, with , , inserting the expression&)—(4) in the system(1) and col-

the corresponding wave vectors. Herezy=k,wg, lecting all terms at the lowest order in| &, O(1), we ob-
with w, the characteristic beam width. The normalizedtain the relationships between the higher-order Fourier coef-
coordinates are related to the physical onesand x, ficients and the zero-order onéar, as called in this paper,
by the relationsz=z,/ and x=wy7r. The normalized the average fields

quadratic  para-metric  interaction coefficientl’({)

= wZoxP(2)(2Sy/ oc®nyn,n ) 2 whereas the normalized bnz0=[ayGnPo+ (¥00n,—1F ¥Gn+1) €5 thol/Nk,
modulations of the refractive indices are given by ,(2) .

=wAny (2)/c and a,(z)=2wAn,(z)/c, where S, enz0=[@InPot (Y00n, — 11 YIn+1) Po ol/nk, ()
=1 GWi/cnt is a characteristic beam intensity ang ,, ,

andAny , ,(2) are the averages and the modulations of the Ynz0=[ayGn%ot (Y0Sn1T ¥Gn-1) bogol/Nk.
refractive indices at the corresponding frequency, respec- ) ) . )

tively. Then, by inserting these expressions in the systénand

The dynamics of the interacting beams is determined by'€dlecting higher-order terms in the corresponding system
the interplay among three characteristic lengths. ThesH'al describes the evolution of the zero-ordeverage
lengths are the diffraction length,, the coherence length f|elds,_ we end up W|th the following system.of equations that
L.=m/|Ak|, and the domain length. In normalized units, describes the evolution of the zero-order fields
z,=1 andL.==/|B|. We consider here a typical QPM grat-
ing for which the domain length is much smaller than the
diffraction length, that isA <1. Then, the grating wave vec-

iU~ Buu+u,+ov*w+8(Jv|?—|w|*)u=0,

i _ 2__ 2y, —
tor defined byl x| =/A satisfies the relatiofx|>1. Under v Buvtv,+ourwo(ul*=|w[%v=0,  (6)
these circumstances, the dynamics of the beam interaction _ -
can be described by a set of averaged equafia8s Fol- iw,— Bw+ 3w, +o*uv — 8(|ul?+ |v]>)w=0,

lowing the method introduced in Reff13], we expand in B B gt
Fourier series the grating parametersg , , andI" and the where u= ¢ge Bl v =poe Pl w= e (But )L and

fields ¢(¢,7), ¢(£,7), and (L, 7): B=pB+ Bu+t B, is the residual wave vector mismatch. Here
By, and B, are the nonlinear wave vector shifts of the FW.
_ inke The parameters- and § are given by the following expres-
(0)=yot v gne"™, @ gond
) 2i sgn(«)
ad),(p,gb( g) = aqﬁ,qo,(/lz gneng- (3) o= ar [70(a¢+ a(p_ a(//)/K_ ')’]' (7)

—TaA2 2 2
6= Gu(LME™, o= pn{, e, O ®
" " 4) and represent the effective second-order nonlinearity and the
_ induced third-order nonlinearity, respectively. Note that
=2, (L, 7)eNtAL through this procedure one takes into account the influence
n of all terms in Eqs(2)—(4) on the average fields; however,
this is done only to the ordeP(1/|x|). Finally, by introduc-
ing the rescaled fielda=|o|u, v=|c|v, andw=ow, the
X'system(6) becomes

where v, and y are the average and the modulation ampli-
tude of the parametric coupling strength, respectivaly,, ,
are the amplitudes of the modulation of the refractive inde
at the frequencies of the two harmonies,(¢,7), ¢n(Z,7),

and ¢,(¢,7) are slowly varying functions with respect to U= Buutu v w+8([v]? = |w[*u=0,

and 7, as compared te'“¢, andE:,B—K is the effective _ o

phase mismatch parameter. We assume that the phase mis- iv,~B,v+v,,+u*w+8(|ul’~|w[*v =0, 9
match introduced by the QPM grating can be very well con-

trolled, so thai3 is very small(although both3 and| x| must iw,— AW+ 3w, +uv— 8(|u]?+[v])w=0,
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FIG. 3. The fractiorR,=1,,/1; of the beam intensity at the SH
vs the nonlinear wave vectof, and 3, , calculated for3=2 and
6=-0.05(a), 6=0 (b), and5=0.05(c).
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FIG. 2. QPM solitons of the syste(8) with parametergg=2,

Bu=2, B,=1, and wo values of the induced nonlineari,  , qfile follows the periodicity of the grating.

=0.05(a) and6=—0.05(h). The curves plot the: (- - -), v (- - -), As seen in Fig. @&,b, the induced Kerr nonlinearities
andw (—) fields along the transverse distancePanels(c), (d),  have a strong influence on the characteristics of the soliton
and (e) correspond to the fieldg({,7), ¢(£,7), and#({,7), re-  solutions. To study in more detail this aspect, we determined

spectively, for the solitons ife). the dependence on the soliton paramegys 3, , and 8 of
— 5 ) ) ) the total beam intensity;,; and the unbalanced beam inten-
where 5= 6/|a|*. Note that this analysis can be easily ex-sjty | .. These quantities are constants of motion associated

tended to the 2D case. _ . with the systen{9) and are given by the following equations:
In order to study the soliton solutions of the syst&ihwe

first determine the soliton solutior(solitary wavey of the

system(9), whose coefficients do not depend on the longitu- |mt:f dr([u|2+|v]2+2|w[?)/2, (10
dinal distance{. Then, the average fieldspy,¢q, o} are

determined from the bar fieldsu,v,w} and subsequently,

from Egs.(4) and(5), we compute the field®, ¢, andy at T |—|2_|—|2 /2 (11)
the input facet of the QPM grating. Finally, these fields are unb 7(ju v9)I2,

used as initial conditions for the systdft); we then propa-

gate them numerically in the actual QPM grating; and verify|, Fig. 3 we show the fractiolR, =l ,,/1 Of the beam in-

whether they reach a regime of stationary propagation, I‘e’de-nsity at the SH, calculated fﬁzz, for three values of the
whether they behave as soliton solutions. The soliton solu-

tions of the systen(9) are defined as solutions of the systeminduced third-order nonlinearity coefficiert This figure
obtained from(9) by dropping the{ derivatives, i.e., solu- shows that, asS increases, the fractioR,, of the SH de-
tions which are/ independent. We found these solutions nu-creases and, for a fixed, it increases with nonlinear wave
merically by a standard relaxation method; an example igectorsg, andg, . Interestingly, for6>0 there is a certain
presented in Fig.(@,b), for two values ofs. A set of values value of the parameter8, and 8, for which R,, reaches a
for the grating parameters that corresponds to these solitop aximum. For instance, 522, for 5=0.05 the ratior,, is
parameters arey , ,=0, yo=0, y=1, andk=9.35. Figure 1 ovimum atg’= g°=1.65.

2 s_hows that the solitons of the systé#) approximate t_he Finally, in vl\J/hatvfoIIows we discuss the influence of the
solitons of the full systentl) very closely: after a transient o inquced nonlinearity on the stability properties of the
propagation distance over which part of the soliton energy i PM solitons. To begin with, we mention that the syst@n

radiated, the beam propagation stabilizes and its profile, . . . ~ .
each harmonic, follows the profile of the grating. Thus, thjws soliton solutions only if,,>0 and >0, i.e., B,

soliton that is formed can be viewed as a beam with itst 8,> —B. Therefore, for3>0 solitons exist for positive
envelope described by the systd®), and whose intensity g, , whereas for3<0 solitons exist forg,+ 8,>|8|. Fur-
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unstable solitons tions [27]. Furthermore, as the differencd ,,; between the

1
[}
'|| crossing points increases with one expects that the quality
| of this multistability, as introduced if28], is enhanced by
\I the induced Kerr nonlinearity; however, a quantitative de-
X scription of this phenomenon is beyond the scope of this
ok abie solim;;\\ paper. To investigate whether these stability properties of the

- 1 5 W 5 5 g solitons of the averaged syste) can be extended to soli-

By i tons of the full systentl), we performed an extensive series
of numerical simulations. Thus, solitons corresponding to
different regions in the parameter space in Fig. 4 were used
as initial conditions for systeril). With these initial condi-
tions, the systenil) was then numerically integrated. The

conclusion of these numerical tests was that, #%0.5,

stable solitons that correspond to systé®h remain stable
thermore, the boundary of the domain of stable solitons ig;pon propagation in the grating described by the full system

given by the following equatiofi26]: (1). More exactly, when propagated in the actual grating,

17

ItOt

15

FIG. 4. Left, soliton stability domains determined f@r= — 2
and §=0.15 (dark gray and §=0.3 (light gray. Right, the same
stability domains represented ihp,l o) plane:5=0.15(—) and
5=0.3(- - -).

P stable solitons of systen®) showed oscillations that fol-
M: . (12) lowed the periodicity of the grating, but their envelope re-
(Bu,By) mained stable.

In conclusion, we have determined the characteristics of
We determined the stability domains numerically and sum-+ p_gqjiton formation and their stability upon propagation in

marize the results as follows. F¢f>0 solitons are stable, a QPM grating, for the type Il geometry. It has been demon-
for all physically meaningful values of, namely5=<0.5. In  strated that at the first order of a perturbation theory the
contrast, for3<0, solitons are unstable within a certain do- SOliton propagation in the QPM grating is strongly influ-
main, whose size increases with These results are summa- enced by the induced focusing or defocusing Kerr-type non-
rized by Fig. 4. This figure illustrates another important phe- linearities. Finally, the influence of this induced Kerr nonlin-
nomenon, namelymultistability of solitons of system(@). earity on the stability properties of the QPM solitons has
Thus. if 7the stability domains are represented in thebeen analyzed and the theoretical results were verified by
(Iunbs o) Plane(see right panel in Fig.)4 one sees that for systematic numerical simulations.

certain fixed values of ., there are two stable branches of  This work has been supported by the NIST Advanced

stable solutions. Therefore, it is possible that at the sam&echnology Program Cooperative Agreement, Grant No.
values of invariants,, andl,, correspond two stable solu- 70NANB8H4018.
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